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Abstract. Device-to-device relative positioning has been widely applied
in modern Web-based systems such as COVID-19 mobile contact trac-
ing, seamless access systems, mobile interactive gaming, and mobile e-
Commerce. The legacy absolute positioning technologies are not suitable
for device-to-device positioning attributed to their mobility and hetero-
geneity of devices. In this paper, we focus on the heterogeneity problem
and propose Capo, the first calibration algorithm that enables the inter-
action among devices with different communication modes for relative
positioning in heterogeneous systems. Capo optimizes the ranging results
of low-precision devices in a collaborative network based on the ranging
data from high-precision devices. The evaluation shows that Capo can
significantly improve up to 26.56% of the positioning accuracy of the het-
erogeneous systems. Real use case study on COVID-19 contact tracing
further shows that Capo significantly improves the accuracy of exposure
notifications.

Keywords: Relative positioning · Heterogeneous devices · Web based
tracing.

1 Introduction

With the emergence of mobile devices and cloud computing, novel Web-based
applications such as COVID-19 contact tracing [17], seamless access systems,
mobile interactive gaming, robot navigation, and mobile e-Commerce have been
widely promoted. The applications of mobile devices first collect positioning data
and then interact with each other by connecting the cloud servers with Web ser-
vices (e.g., HTTP, XML). The user experience is closely related to the precision
of device-to-device positioning, the prerequisite stage of these applications.

Device-to-device positioning is a process by which mobile devices, such as
smartphones or tablets, can determine their relative positions to one another
without the use of external infrastructure like GPS. This is done through the
exchange of wireless signals, which can be used to calculate the distances between
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devices and then be used to infer their relative positions. For example, Apple
recently released Airtag [12] portable hardware to provide users with fast and
accurate tracking and positioning through Ultra-Wide Band (UWB). The pro-
posal of such positioning methods also provides new ideas for the development
direction of motion-sensing mobile games such as Nintendo Switch, a game con-
sole that supports Bluetooth Low Energy (BLE) to connect its controller to play
motion-sensing games. Nintendo Switch has reached 125 million units worldwide
in 2023 and this number will continue to increase. This indicates the immense
potential values for the device-to-device relative positioning systems.

Although many schemes [4, 14, 16] for object positioning using pre-deployed
anchors have been proposed, they mostly focus on absolute object positioning.
They are not suitable for device-to-device relative positioning because of the
mobility and heterogeneity of devices. First, due to the mobility of devices, a
large number of devices may continue to join or withdraw from the positioning
system, and it might be impossible to pre-deploy a number of fixed anchors in all
the spots. Second, devices with different modes cannot communicate with each
other. For example, a UWB-only device cannot parse a message from a BLE-only
device. Due to the heterogeneity of devices, the legacy positioning systems mainly
focused on the interaction between devices with the same communication mode,
the positioning accuracy is therefore decided by the lower bound achieved by the
most compatible mode among a group of devices. In this case, the precision of
device-to-device positioning is decided by the BLE-based technology, although
some of the devices support the UWB-based technology with higher accuracy [3].

Modern UWB technology is a pulse communication technology that started
in the 1960s. However, UWB is a kind of new communication mode for mobile
devices compared with the widely-deployed modes such as Wi-Fi, Bluetooth,
etc. Recently, several companies have been developing UWB chips and antenna
manufacturers to provide out-of-the-box solutions, but most of them only sell
chips or demo kits rather than consumer-oriented products. When revisiting
the evolution of Near-field communication (NFC) in the past two decades [10],
we can easily infer that it takes a long time for a new mode to be supported
by most devices. We thus believe that UWB-based positioning technology will
have to coexist with legacy positioning technologies in the next few decades.
Generally, it will be a significant contribution if we find a way to use a ”high-
precision mode” (e.g., UWB) to calibrate the device-to-device positioning of a
”low-precision mode” (e.g., BLE).

In this paper, we propose Capo [18], an algorithm that improves the accuracy
of low-precision device-to-device positioning with the help of high-precision ones.
To the best of our knowledge, Capo is the first calibration algorithm that enables
the interaction among devices with different communication modes for relative
positioning in heterogeneous systems. In particular, Capo optimizes the ranging
results of low-precision devices in a collaborative network based on the ranging
data from high-precision devices. First, it calculates the actual distance from
the high-precision device to the target low-precision device. Then it calculates
the standard deviation of the distribution according to the signal attenuation
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model and takes the actual distance as the mean to obtain the simulated ranging
distance. Finally, the estimated coordinates of the target low-precision device
are obtained by the least squares method, which greatly accurately locates the
low-precision device. The evaluation shows that Capo can significantly improve
11.56% ∼ 26.56% of the positioning accuracy of the system.

The remainder of this paper is organized as follows. Section 2 discusses the
background and motivation of the paper. Section 3 introduces the overall design
of the scheme. Section 4 presents the performance evaluation and studies a real-
world use case of COVID-19 contact tracing. Finally, concluding remarks are
made in Section 5.

2 Background and Motivation

Device-to-Device positioning requires high accuracy. Nowadays, there
are many device-to-device applications, such as indoor navigation, and robotics
that require centimeter-level high-precision positioning. However, only achieve
meter-level positioning would lead to serious errors or even unavailability when
running the application. Apple and Google have jointly proposed the Exposure
Notification framework [1] in 2020 to help governments and public health author-
ities reduce the spread of COVID-19 through contact tracing applications. To
improve framework capabilities, Huawei developed Contact Shield [2] to provide
basic contact tracing services to detect the user’s contact level with COVID-19
patients, ensuring the interoperability between Huawei phones and other An-
droid/iOS phones.
Accuracy varies with different communication modes. Most works de-
veloping BLE-based [5] location systems use RSSI [11] to estimate location. And
it was demonstrated that a scheme [7] using BLE as a location sensing medium
is able to obtain 92% precision to within meters m accuracy. The positioning
accuracy of the Wi-Fi signal-based positioning method [15] is in the range of
2-10 meters, and it has a serious problem of co-frequency interference. Apari-
cio et al. proposed a fusion method of BLE and Wi-Fi technologies for indoor
positioning, which improved accuracy by 50 centimeters on average compared
with the Wi-Fi positioning method. Due to the precision positioning potential
of UWB technology with a centimeter scale and higher precision, it is the first
choice for indoor high-precision positioning.
Low-precision devices can be enhanced by high-precision ones. Some
interactions between high-precision devices and low-precision device, would have
the potential to achieve better device-to-device positioning performance [13].
As shown in Figure 1(a), from the perspective of device O, it adopts BLE to
compute the distances (OA, OB, OC) to the devices A, B, and C, with an error
denoted by an arc-shaped shaded region. From the perspective of devices A, B,
and C, they adopt UWB to compute the distances (AB, AC, BC) between each
other. As shown in Figure 1(b), the relative positions of devices A, B, and C
form a triangle. According to the constraint that devices A and C cannot be
out of the scope of their shaded regions, we can infer that there might exist an
unavailable location of device B in Figure 1(b) when the triangle moves to a
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Fig. 1. Calibrating low-precision device using high-precision devices.

certain position. The relative position of the three high-precision devices adds a
new position constraint to the ranging results of the low-precision devices, so as
to narrow the margin of error of the low-precision devices.

3 The Capo Design

3.1 Design Rationale

Our goal is to calibrate device-to-device relative positioning for low-precision de-
vices. To enable multiple high-precision devices to help the low-precision device
in a collaborative network, inspired by the legacy absolute positioning technolo-
gies such as trilateral positioning, we give the design rationale of new solution.
Theoretically, with only two high-precision devices, it might also be possible
to enhance the position capability the low-precision devices, as detailed in sec-
tion 3.3). For ease of understanding and description, we mainly consider the
situation of at least three high-precision devices. In this case, the calibration
of low-precision can be achieved in four steps. In step 1, we measure the rela-
tive positions between high-precision devices via the high-precision communica-
tion mode and initialize the coordinates of all high-precision devices. In step 2,
we measure the distances (D1) between the low-precision device and the high-
precision device via the low-precision communication mode. In step 3, a trilateral
positioning algorithm can be used to locate the coordinates of the low-precision
device. In step 4, recalculate the distances (D2) between the low-precision device
and the high-precision device via the measured coordinates of the low-precision
device. The distance set of D2 is regarded as the calibration of D1.

Assume three high-precision devices A, B, and C, and one target low-precision
device O that are non-collinear on the plane. For each ranging device, we regard
its coordinates as the center of the circle and the distance to point O as the
radius, then we obtain three circles. Ideally, the three circles intersect at one
point, which is the coordinate of the target device O. Since the measurement
variation is ubiquitous, it may result in these circles to intersect in an area or
even not intersect. Based on the above analysis, we propose a new positioning
algorithm Capo to calculate the coordinates of the target point. Capo adopts the
least squares method to solve the approximate coordinates of the target, which
is detailed in the next section.

3.2 The Capo Algorithm

Capo assumes the ranging of low-precision communication mode based on RSSI
obeys Gaussian distribution. The simplified model [6]of wireless signal attenua-
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tion can be expressed as RSSIi = KdB−10γ log10 (di), where RSSIi signifies the
received signal strength of ith receiving end, andKdB signifies the signal strength
at a certain fixed distance from the signal source. For calculation convenience,
this value is usually 1 meter [6].

Thus the ranging data can be generated based on the RSSIi equation men-
tioned above, γ represents the power falloff exponent, which is measured in
practical applications and determined by the device type and its ranging accu-
racy. The lower the accuracy, the higher the value, and the greater the margin
of error caused by the distance. If not specified, we set γ = 5. di represents the
distance of the target away from the ith signal source.

According to [8], the relation of the distance d and the signal strength can
be displayed as (d = 10∧KdB−RSSIi

10∗γ ). Therefore, the signal value conforming
to the signal attenuation model can be used to express the error caused by
the signal strength at a certain point. Since a large number of experiments
have shown that the signal strength of RSSI at a certain point conforms to
the Gaussian distribution [9] as the form of RSSI ∼ N

(
µ, σ2

)
, where µ =

1
m

∑m
i=1 RSSIi, and σ2 = 1

(m−1)
∑m

i (RSSIi − µ)
2
, so we can construct the

ranging data distance values d that obey the distribution through the above-
mentioned signal attenuation model based on the RSSIi equation. Algorithm 1
demonstrates the process of generating ranging data d.

Algorithm 1 Ranging data generation

Input: Set of points of high-precision devices

P , Pi represents the i
th device Pi(xx.yi). Mea-

surement point Pm(xm, ym). Power falloff ex-

ponent γ.

Output: Ranging data array d, di represents

the ranging data obtained from ith device.
1: n← 1
2: σ, error, distance← 0
3: while n ≤ i do
4: distance←

√
(xn − xm)2 + (yn − ym)2

5: σ ← γ ∗ log10(distance)
6: error ← Random number that follow the

distribution N(distance, σ2)
7: dn ← distance + error
8: end while
9: send d

Algorithm 2 The Capo

Input: A:i*2 matrix, B:i*1 matrix Ranging

data array d, di represents the ranging data

obtained from ith device Set of points of high-

precision devices P , Pi represents the ith de-

vice Pi(xx.yi).

Output: X, the 2*1 matrix.
1: n← 1
2: while n ≤ i do
3: if n = 1 then
4: A11 ← 2(x1 − xi), A12 ← 2(y1 − yi)
5: B1 ← x2

1 − x2
i + y2

1 − y2
i + d2

i − d2
1

6: else
7: An1 ← 2(xn−1 − xn), An2 ← 2(yn−1 −

yn)
8: Bn ← x2

n−1−x2
n+y2

n−1−y2
n+d2

n−d2
n−1

9: end if
10: end while
11: X ← (ATA)−1ATB
12: send X

To apply the least squares method to solve the approximate solution based
on the ranging results, we first establish the system of equations using the in-
formation from each device. Each equation within this system is in the form
of: (xi − x)

2
+ (yi − y)

2
= d2i , where xi, yi as the coordinates of the ith device

obtained via the high-precision positioning technology5. Then we calculate the

5 Since the centimeter-level error of high precision technology is negligible compared
to the meter-level error of low precision technology, for the sake of simplicity, in
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Fig. 2. Approximate target points measured under two high-precision devices.

non-linear equations to obtain the linear equations. Algorithm 2 demonstrates
the process of applying the least squares method by ranging data d to obtain
the approximate coordinate of the target device.

Finally, we use the least squares method to solve the above equations and ob-
tain a two-dimensional column vector XT = [x y], representing the approximate
coordinate (x, y) of the target point we obtained.

3.3 Discussion: Two High-precision Devices

We now discuss the effects of our algorithm for calibrating the coordinates of
low-precision devices when there are only two high-precision devices. As shown
in Figure 2, when there are only two high-precision devices A and B in the
two-dimensional space, in theory, there should be two feasible point coordinates
of device C, i.e., nodes C1 and C2. However, the actual output of the least
squares method is node C3 instead. As illustrated in Figure 2, the ranging error
between C3 and C might be much larger than that between C2 and C. In other
words, applying Capo to a scenario with only two high-precision devices could
potentially introduce extra biases.

The challenge here is that by applying the least squares method, we can
only obtain a single approximate coordinate of the target point other than two.
Thus, we infer that by adding a module of angle measurements, it is possible to
indirectly compute the coordinates of C1 or C2 via the cosine function. However,
we leave this for future work.

4 Evaluation

In this section, we first evaluate the overall performance of Capo with three
high-precision devices. We then explore how Capo performs with different impact
factors, such as a number of high-precision devices. We also investigate the extra
overhead introduced by applying Capo. Finally, we give a case study of contact
tracing, to further show the improvement of Capo in real-world scenarios.

4.1 Overall performance of Capo

For simplicity, we consider a heterogeneous system with three high-precision
devices and one low-precision device in two-dimensional space. In this section,

this paper we assume a zero positioning error between high-precision devices, and di
represents the ranging distance generated using the signal attenuation model men-
tioned above. These coordinates are The case of non-zero positioning error, however,
we leave it as future work.
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we conduct a simulation evaluation of the calibration performance of Capo,
where three high-precision devices help the low-precision device achieve higher
precision of device-to-device positioning. In practical implementation, we need
the relative position of high-precision devices to conduct the calibration process.
For these high-precision devices, the existing positioning methods (based on ToA,
AoA, etc.) can be used to establish the relative coordinate relationship based on
these high-precision devices. Since the calibration performance is independent
of the absolute position of the devices, our experiment does not lose the general
setting of the coordinates of the devices. The fixed coordinates of the three
high-precision devices A, B and C are (-50,0), (10,40) and (20, -30) respectively,
and the coordinates of low-precision ranging target device O are (5,5) (if not
specified, the coordinate units are in meters). Noted that the coordinates of
high-precision devices here are only for generating simulated ranging data, and
absolute coordinates are not necessary for the practical implementation of Capo.
The tests are conducted 3,000 times to explore the error distribution of the
ranging results between the low-precision and high-precision devices.
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Fig. 3. Error distribution of the ranging result be-
tween device O and device A, B, C.
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Figure 3 illustrates the calibration performance of Capo compared with the
original way, which simply applies the wireless signal attenuation model. It is
demonstrated that Capo can significantly calibrate the device-to-device position-
ing compared with the original way. Specifically, Capo improves the accuracy of
the ranging between O and A by 11.56%, with the median ranging error de-
creasing from 6.9960 m to 6.1873 m. Similarly, it improves the ranging accuracy
between O and B, and C by 24.76%, and 26.56%, respectively, leading to me-
dian ranging error reductions from 6.3081 m to 4.7461 m for O and B, and from
6.4972 m to 4.7715 m for O and C.

We further consider Capo’s performance in the above scenario when the
high-precision device has ranging errors in different γ values. The generation
of high-precision device error values is also based on section 3.2. Since Capo
does not give a specific positioning algorithm for high-precision devices, when
simulating the high-precision device error in this scenario, the coordinate offset
of the high-precision device caused by ranging error will be simulated by using
the error generated from section 3.2. In particular, in this scenario, the algorithm
employs the average distance among three high-precision devices for calculations.

Figure 4 illustrates the Capo’s calibration performance when a high-precision
device has ranging errors caused by different γ values compared with the original
way (with γ being 1). It is demonstrated that when the high-precision device has
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a relatively small γ compared to the low-precision device, Capo maintains stable
calibration performance even considering the error in high-precision devices.

To summarize, the positioning results obtained by the Capo algorithm have
an optimization effect on each device in the system, which can improve the
accuracy of the positioning results as a whole. This relies on Capo making full use
of three high-precision devices to provide more calibration data for the ranging
of the low-precision device.

4.2 Overhead analysis of Capo

We further evaluate the communication overhead of running Capo among de-
vices. We let Ch and Cl denote the ranging cost required by the high-precision
device and the low-precision device respectively, noting that Ch = 2Cl . And
assume n is the number of high-precision devices. We define the overhead of the
system running Capo as follows: Cost = n∗(n− 1)∗Ch + n∗Cl.
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Fig. 5. Overhead of Capo with the
number of high-precision devices.

Fig. 6. An example of exposure
check results.

Figure 5 demonstrates that the cost of Capo rises with an increase in the
number of devices, attributed to the heightened number of interactions leading
to higher overhead. However, we believe the improved ranging accuracy will
more than pay for the Capo overhead if we limit the maximum number of high-
precision devices Nmax, for instance, Nmax = 4.

Based on the above observations, we find that 4 high-precision devices gain
a considerable accuracy improvement with a slightly increased cost compared
with 2, 3, 5, and 6 high-precision devices. We infer that the inclusion of a fourth
high-precision device, if feasible, has the potential to substantially enhance the
overall performance of the calibration system.

4.3 Case Study: Contact Tracing

We apply Capo in a COVID-19 Contact Tracing application to improve system-
ranging performance for more accurate exposure notifications and Figure 6 shows
an example of exposure check results. We take the 100 m × 100 m space as the
experimental scene, where 100 users are randomly distributed. One confirmed
patient was randomly selected for each test and the test was repeated 1,000
times. Note that since scenes with several confirmed patients can be divided
into multiple independent scenes with a single confirmed patient, repeating a
single experiment can restore the practical situation.
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Methodology. We assume that the confirmed patient uses a BLE-only device
(i.e., a low-precision device with γ = 5)6, and other users use both UWB and
BLE enabled devices (i.e., high-precision devices). The safe distance is regarded
as 1 meter and by applying Capo, UWB ranging is used to assist in improving
the ranging results of low-precision BLE devices. As concluded above, 4 high-
precision devices are enough for calibration, and in this scenario, if there are
more than four UWB devices in the scene, only 4 UWBs need to be selected to
complete the calibration. After calibrating device-to-device ranging with Capo,
a list of close contacts and non-close contacts is obtained by comparing the safe
distance with the measured distance.

Performance evaluation metrics. For each test, we evaluate its accuracy,
precision, and recall by calculating the classification results of Capo, Original
(without Capo), and Ground Truth.
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Results. The classification results of Capo and Original are illustrated in Figure
7. The accuracy of contact tracing classification using Capo is obviously higher
than that using Original. Specifically, the application of Capo has resulted in
an increase in accuracy by over 60%, elevating it from 95% to 98%, and his
improvement is attributed to Capo’s ability to calibrate device-to-device ranging
among low-precision BLE devices using high-precision UWB devices.

We further explore the impact of varying values of γ, and Figure 8 shows
that Capo’s augmented benefit as γ increases. This reveals that the lower the
precision of the device, the more benefit we can get by applying Capo.

5 Conclusion

In this paper, we proposed Capo for calibrating device-to-device positioning in
heterogeneous systems. By applying Capo, the ranging accuracy of low-precision
devices can be significantly improved according to the relative positioning of
high-precision devices. Evaluation results further show that Capo with four high-
precision devices can balance calibration performance and cost well, which is rec-

6 According to the RSSIi equation, based on the scale of the distance and BLE’s
RSSI-based ranging error of 2–10 m, we set γ = 5 for BLE devices.
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ommended. We studied a real-world use case of contact tracing, and the results
show that Capo significantly improves the accuracy of exposure notifications.
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